

FDMA510PZ Single P-Channel PowerTrench[®] MOSFET –20V, –7.8A, 30mΩ

Features

- Max $r_{DS(on)} = 30m\Omega$ at $V_{GS} = -4.5V$, $I_D = -7.8A$
- Max $r_{DS(on)} = 37m\Omega$ at $V_{GS} = -2.5V$, $I_D = -6.6A$
- Max $r_{DS(on)} = 50m\Omega$ at $V_{GS} = -1.8V$, $I_D = -5.5A$
- Max $r_{DS(on)} = 90m\Omega$ at $V_{GS} = -1.5V$, $I_D = -2.0A$
- Low profile 0.8mm maximum in the new package MicroFET 2X2 mm
- HBM ESD protection level > 3KV typical (Note 3)
- RoHS Compliant

General Description

applications.

D

D

G

1

2

3


This device is designed specifically for battery charge or load switching in cellular handset and other ultraportable applications.

The MicroFET 2X2 package offers exceptional thermal

performance for its physical size and is well suited to linear mode

It features a MOSFET with low on-state resistance.

Bottom Drain Contact

MicroFET 2X2 (Bottom View)

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units		
V _{DS}	Drain to Source Voltage		-20	V	
V _{GS}	Gate to Source Voltage		±8	V	
ID	Drain Current -Continuous	(Note 1a)	-7.8	•	
	-Pulsed		-24	— A	
D	Power Dissipation	(Note 1a)	2.4	w	
PD	Power Dissipation (Note 1		0.9	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	52	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	145	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
510	FDMA510PZ	MicroFET 2X2	7"	8mm	3000units

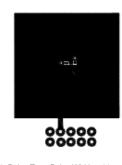
April 2008

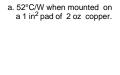
6 **D**

S

5 D

4


©2008 Fairchild Semiconductor Corporation FDMA510PZ Rev.B1

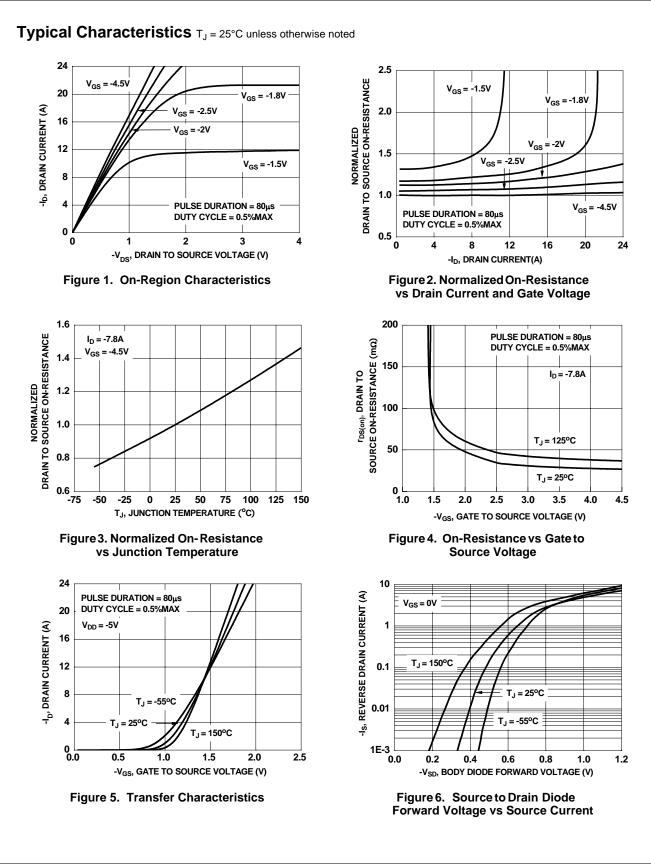

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = -250\mu A, V_{GS} = 0V$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250\mu A$, referenced to $25^{\circ}C$		-13		mV/°C
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{GS} = 0V$			-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8V, V_{DS} = 0V$			±10	μA
On Chara	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-0.4	-0.7	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250\mu$ A, referenced to 25°C		3		mV/°C
	Static Drain to Source On Resistance	$V_{GS} = -4.5V, I_D = -7.8A$		27	30	mΩ
		$V_{GS} = -2.5V, I_D = -6.6A$		34	37	
r _{DS(on)}		$V_{GS} = -1.8V, I_D = -5.5A$		46	50	
		$V_{GS} = -1.5V, I_D = -2.0A$		60	90	
		$V_{GS} = -4.5V, I_D = -7.8A, T_J = 125^{\circ}C$		36	40	
9fs	Forward Transconductance	$V_{DD} = -5V, I_D = -7.8A$		26		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			1110	1480	pF
C _{oss}	Output Capacitance	$-V_{DS} = -10V, V_{GS} = 0V,$		205	275	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		185	280	pF
	g Characteristics					
t _{d(on)}	Turn-On Delay Time			7	14	ns
t _r	Rise Time	$V_{DD} = -10V, I_D = -7.8A$		9	18	ns
t _{d(off)}	Turn-Off Delay Time	$-V_{GS} = -4.5V$, $R_{GEN} = 6\Omega$		125	200	ns
t _f	Fall Time			64	103	ns
Q _q	Total Gate Charge			19	27	nC
Q _{gs}	Gate to Source Charge	$V_{DD} = -5V, I_D = -7.8A$		2.1		nC
Q _{qd}	Gate to Drain "Miller" Charge	$V_{GS} = -4.5V$		4.2		nC

I _S	Maximum Continuous Drain-Source Diode Forward Current			-2	А
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = -2A$	-0.8	-1.2	V
t _{rr}	Reverse Recovery Time	$I_F = -7.8A$, di/dt = 100A/µs	66	106	ns
Q _{rr}	Reverse Recovery Charge		44	71	nC

Notes:

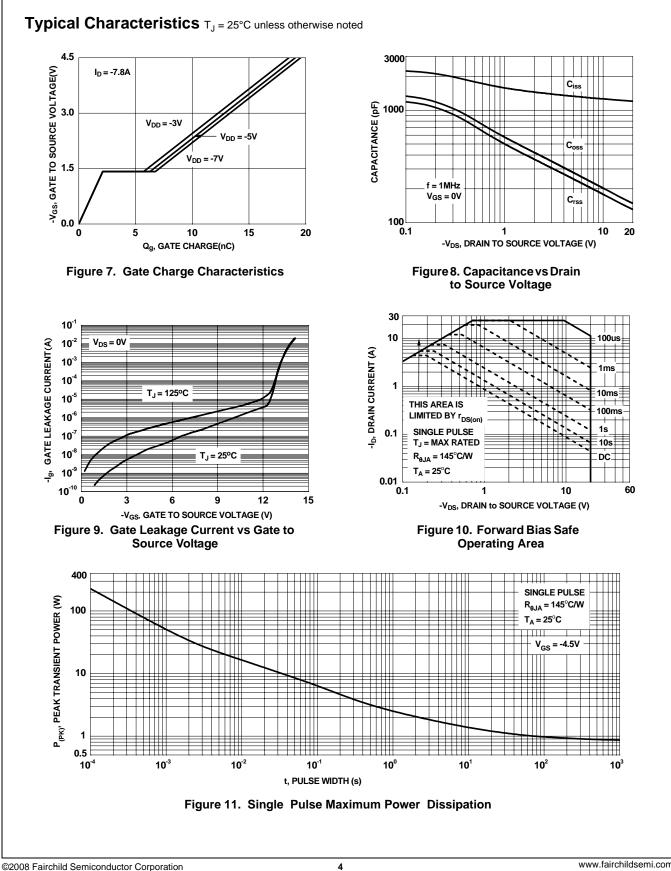
1. R_{01A} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

000


b. 145°C/W when mounted on a minimum pad of 2 oz copper.

Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.
The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

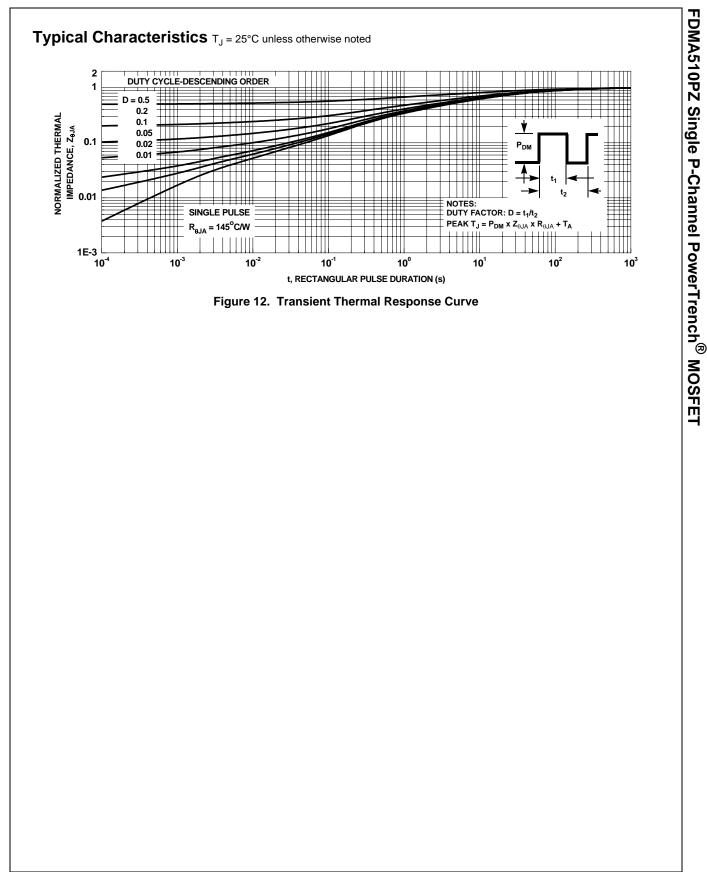
©2008 Fairchild Semiconductor Corporation FDMA510PZ Rev.B1

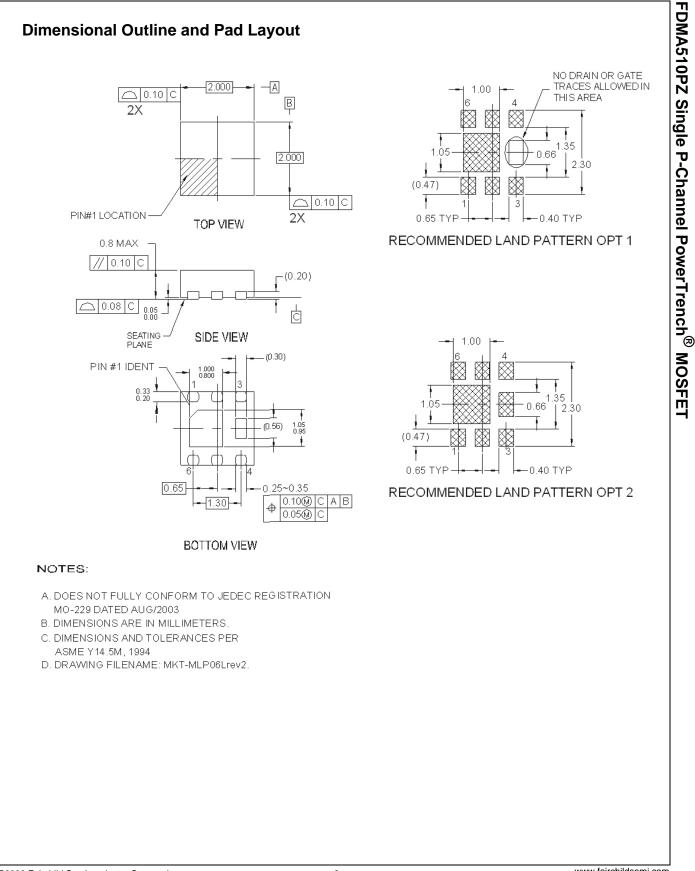

www.fairchildsemi.com

FDMA510PZ Single P-Channel PowerTrench[®] MOSFET

©2008 Fairchild Semiconductor Corporation FDMA510PZ Rev.B1 3

www.fairchildsemi.com




FDMA510PZ Rev.B1

4

www.fairchildsemi.com

FDMA510PZ Single P-Channel PowerTrench[®] MOSFET

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

CorePLUS TM CorePOWER TM <i>CROSSVOLT</i> TM CTL TM Current Transfer Logic TM EcoSPARK [®] EfficentMax TM EZSWITCH TM * $Fairchild^{®}$ Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series TM FACT [®] Fast [®] Fast [®] Fast [®]	F-PFS [™] FRFET [®] Global Power Resou Green FPS [™] e-Seri GTO [™] IntelliMAX [™] ISOPLANAR [™] MgaBuck [™] MiCROCOUPLER [™] MiCROCOUPLER [™] MicroFET [™] MicroPak [™] MillerDrive [™] MotionMax [™] MotionSPM [™] OPTOLOGIC [®] OPTOPLANAR [®]	purce SM Programmable Active Droop [™] QFET [®] ries [™] QS [™] Quiet Series [™] RapidConfigure [™] Saving our world 1mW at a time [™] SmartMax [™] M SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SuperMOS [™]	the franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ ✓SerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™
FAST FastvCore™ FlashWriter [®] *	U [®]		

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition		
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		
	Formative or In Design First Production Full Production		